ENGINEERING DRAWING

B. TECH (FIRST YEAR)

SCALE

Definition

A scale is defined as the ratio of the linear dimensions of the object as represented in a drawing to the actual dimensions of the same.

Necessity

- Drawings drawn with the same size as the objects are called full sized drawing.
- It is not convenient, always, to draw drawings of the object to its actual size. e.g. Buildings, Heavy machines, Bridges, Watches, Electronic devices etc.
- Hence scales are used to prepare drawing at
- Full size
- Reduced size
- Enlarged size

BIS Recommended Scales

Reducing scales	$1: 2$	$1: 5$	$1: 10$
	$1: 20$	$1: 50$	$1: 100$
$1: Y(Y>1)$	$1: 200$	$1: 500$	$1: 1000$
	$1: 2000$	$1: 5000$	$1: 10000$
Enlarging scales	$50: 1$	$20: 1$	$10: 1$
X:1 (X>1)	$5: 1$	$2: 1$	
Full size scales			$1: 1$

Intermediate scales can be used in exceptional cases where recommended scales can not be applied for functional reasons.

Types of Scale

- Engineers Scale :

The relation between the dimension on the drawing and the actual dimension of the object is mentioned numerically (like $\mathbf{1 0} \mathbf{~ m m}=\mathbf{1 5} \mathrm{m}$).

- Graphical Scale:

Scale is drawn on the drawing itself. This takes care of the shrinkage of the engineer's scale when the drawing becomes old.

Types of Graphical Scale

- Plain Scale
- Diagonal Scale
- Vernier Scale
- Comparative scale

Representative fraction (R.F.)

$$
\text { R.F. }=\frac{\text { Length of an object on the drawing }}{\text { Actual Length of the object }}
$$

When a 1 cm long line in a drawing represents 1 meter length of the object,

$$
R . F=\frac{1 \mathrm{~cm}}{1 \mathrm{~m}}=\frac{1 \mathrm{~cm}}{1 \times 100 \mathrm{~cm}}=\frac{1}{100}
$$

Plain scale

- A plain scale consists of a line divided into suitable number of equal units. The first unit is subdivided into smaller parts.
- The zero should be placed at the end of the $1^{\text {st }}$ main unit.
- From the zero mark, the units should be numbered to the right and the sub-divisions to the left.
- The units and the subdivisions should be labeled clearly.
- The R.F. should be mentioned below the scale.

Construct a scale of $1: 4$, to show centimeters and long enough to measure up to 5 decimeters.

- R.F. $=1 / 4$
- Length of the scale $=$ R.F. \times max. length $=1 / 4 \times 5 \mathrm{dm}=12.5 \mathrm{~cm}$.
- Draw a line 12.5 cm long and divide it in to 5 equal divisions, each representing 1 dm .
- Mark 0 at the end of the first division and 1,2,3 and 4 at the end of each subsequent division to its right.
- Divide the first division into 10 equal sub-divisions, each representing 1 cm .
- Mark cm to the left of 0 as shown.

Question: Construct a scale of $1: 4$, to show centimeters and long enough to measure up to 5 decimeters

- Draw the scale as a rectangle of small width (about 3 mm) instead of only a line.
- Draw the division lines showing decimeters throughout the width of the scale.
- Draw thick and dark horizontal lines in the middle of all alternate divisions and sub-divisions.
- Below the scale, print DECIMETERS on the right hand side, CENTIMERTERS on the left hand side, and R.F. in the middle.

Diagonal Scale

- Through Diagonal scale, measurements can be up to second decimal (e.g. 4.35).
- Diagonal scales are used to measure distances in a unit and its immediate two subdivisions; e.g. $d m$, $c m \& m m$, or yard, foot \& inch.
- Diagonal scale can measure more accurately than the plain scale.

Diagonal scale.....Concept

- At end B of line $A B$, draw a perpendicular.
- Step-off ten equal divisions of any length along the perpendicular starting from B and ending at C .
- Number the division points 9,8,7,.....1.
- Join A with C.
- Through the points 1, 2, 3, etc., draw lines parallel to $A B$ and cutting $A C$ at $1^{\prime}, 2^{\prime}, 3^{\prime}$, etc.
- Since the triangles are similar; $1^{\prime} 1=0.1 \mathrm{AB}$, $2^{\prime} 2=0.2 \mathrm{AB}, \ldots .9^{\prime} 9=0.9 \mathrm{AB}$.
- Gives divisions of a given short line $A B$ in multiples of $1 / 10$ its length, e.g. $0.1 \mathrm{AB}, 0.2 \mathrm{AB}$,
 0.3 AB , etc.

Construct a Diagonal scale of $\mathrm{RF}=3: 200$ (i.e. 1:66 2/3) showing meters, decimeters and centimeters. The scale should measure up to 6 meters. Show a distance of 4.56 meters

- Length of the scale $=(3 / 200) \times 6 \mathrm{~m}=9 \mathrm{~cm}$
- Draw a line $\mathrm{AB}=9 \mathrm{~cm}$. Divide it in to 6 equal parts.
- Divide the first part A0 into 10 equal divisions.
- At A draw a perpendicular and step-off along it 10 equal divisions, ending at \mathbf{D}.

Diagonal Scale

- Complete the rectangle ABCD. ${ }^{200}$
- Draw perpendiculars at meter-divisions i.e. 1, 2, 3, and 4.
- Draw horizontal lines through the division points on AD. Join D with the end of the first division along $A 0$ (i.e. 9).
- Through the remaining points i.e. 8, 7, 6, ... draw lines // to D9.
- $P Q=4.56$ meters

Vernier Scales

- Similar to Diagonal scale, Vernier scale is used for measuring up to second decimal.
- A Vernier scale consists of (i) a primary scale and (ii) a vernier.
- The primary scale is a plain scale fully divided in to minor divisions.
- The graduations on the vernier are derived from those on the primary scale.
Least count (LC) is the minimum distance that can be measured.
Forward Vernier Scale:
MSD>VSD; LC = MSD-VSD

Backward Vernier scale:
VSD $>$ MSD; LC = VSD - MSD

Vernier scale.... Concept

- Length A0 represents 10 cm and is divided in to 10 equal parts each representing 1 cm .
- $B 0=11$ (i.e. $10+1$) such equal parts $=11 \mathrm{~cm}$.
- Divide B0 into 10 equal divisions. Each division of B0 will be equal to $11 / 10=1.1 \mathrm{~cm}$ or 11 mm .
- Difference between 1 part of $A 0$ and one part of $B O=1.1 \mathrm{~cm} \mathrm{-1.0}$ $\mathrm{cm}=0.1 \mathrm{~cm}$ or 1 mm .

Question: Draw a Vernier scale of R.F. $=\mathbf{1 / 2 5}$ to read up to 4 meters. On it show lengths 2.39 m and 0.91 m

CENTIMETRES

DECIMETRES

- Length of Scale $=(1 / 25) \times(4 \times 100)=16 \mathrm{~cm}$
- Draw a 16 cm long line and divide it into 4 equal parts. Each part is 1 meter. Divide each of these parts in to 10 equal parts to show decimeter (10 cm).
- Take 11 parts of dm length and divide it in to 10 equal parts. Each of these parts will show a length of 1.1 dm or 11 cm .
- To measure 2.39 m , place one leg of the divider at A on 99 cm mark and other leg at B on 1.4 mark. $(0.99+1.4=2.39)$.
- To measure 0.91 m , place the divider at C and $D(0.8+0.11=0.91)$.

Question: Draw a Vernier scale of R.F. $=\mathbf{1 / 2 5}$ to read up to 4 meters. On it show lengths 2.39 m and 0.91 m

CENTIMETRES

DECIMETRES

- Length of Scale $=(1 / 25) \times(4 \times 100)=16 \mathrm{~cm}$
- Draw a 16 cm long line and divide it into 4 equal parts. Each part is 1 meter. Divide each of these parts in to 10 equal parts to show decimeter (10 cm).
- Take 11 parts of dm length and divide it in to 10 equal parts. Each of these parts will show a length of 1.1 dm or 11 cm .
- To measure 2.39 m , place one leg of the divider at A on 99 cm mark and other leg at B on 1.4 mark. $(0.99+1.4=2.39)$.
- To measure 0.91 m , place the divider at C and $D(0.8+0.11=0.91)$.

